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omasz Żuk ∗, Franciszek Rakowski, Jan P. Radomski
nterdisciplinary Center for Mathematical and Computational Modeling, University of Warsaw, Pawinskiego 5A, bldg. D, 02-106 Warsaw, Poland

r t i c l e i n f o

rticle history:
eceived 7 April 2009

a b s t r a c t

The spread efficiency of influenza virus is significantly affected by several environmental parameters.
However, neither the underlying reasons, nor the exact character and magnitude of the phenomena
eceived in revised form 2 July 2009
ccepted 5 July 2009

eywords:
nfluenza
nfluenza epidemiology

involved are sufficiently well understood. Here we present a probabilistic approach to the virus transmis-
sion events. For a sample ensemble, we construct a model of the infectivity as a function of the ambient
conditions, and we determine its parameter values on the basis of the available experimental data.

© 2009 Elsevier Ltd. All rights reserved.
nfluenza infectivity
nfluenza transmission

. Introduction

Among the viruses that are spread efficiently by air, the influenza
virus causes one of the highest worldwide morbidity and mortal-

ty rates. However, there are still some factors related to its spread
hat have not been thoroughly examined and understood. In partic-
lar, the influence of weather conditions, such as air temperature
nd humidity, on the between-host transmission of this virus is not
nderstood clearly, although many studies were carried out in the
ast (Brankston et al., 2007; Weber and Stilianakis, 2008; Mäkinen
t al., 2009). Thus far, the underlying reasons for the predominantly
intertime spread of influenza, significant for the understanding of

ts epidemiology and evolution, are still unexplained. Nonetheless,
he seasonality of influenza epidemics is well characterized. In tem-
erate regions influenza epidemics recur with marked regularity:

n the northern hemisphere the influenza season spans period from
ovember to March, while in the southern hemisphere epidemics

ast from May until September. Many theories have been proposed
o explain this seasonal variation (Lofgren et al., 2007; Lipsitch and
iboud, 2009). Markedly different is influenza’s virus behavior in

he tropics (Viboud et al., 2006; Lowen et al., 2008). Recently some
esults have provided direct experimental evidence of the major

ole of weather conditions in the dynamics of influenza transmis-
ion. Lowen et al. (2007), using the guinea pig as a model host, have
hown that the efficiency of airborne influenza spreading depends
pon both ambient relative humidity and temperature, and that

∗ Corresponding author. Tel.: +48 22 55 40 800; fax: +48 22 55 40 801.
E-mail addresses: tzuk@icm.edu.pl (T. Żuk), rakowski@icm.edu.pl (F. Rakowski),

anr@icm.edu.pl (J.P. Radomski).

476-9271/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compbiolchem.2009.07.005
both cold and dry conditions strongly favor transmission. Shaman
and Kohn (2009) analyzed the effects of the absolute humidity on
the influenza virus transmissibility (IVT) and its survival rates (IVS),
and found that absolute humidity constrains both these effects
much more significantly than the relative humidity does. Their
study shows 50% of IVT variability, and 90% of IVS variability can be
explained by the absolute humidity, whereas, respectively, only 12%
and 36% could be explained by the relative humidity. In temperate
regions, both outdoor and indoor, the absolute humidity possesses
a strong seasonal cycle that minimizes in winter, which is consis-
tent with a wintertime increase in IVS and IVT, and may explain the
seasonality of influenza. The stability of the virus in aerosols, and
the size range of aerosol droplets, are supposedly the most signif-
icant factors influencing the influenza virus spread. Some studies
of the possible effects they might have were carried out, although
they are neither numerous nor conclusive. Wang et al. (2005) stud-
ied the case of SARS; Tellier (2006) reported on influenza A aerosol
spread. Lai and Cheng (2007) modeled expiratory droplets disper-
sion transport using Eulerian approach. Quantification of the routes
of influenza transmission was attempted by Atkinson and Wein
(2008).

Recently we have presented a simple model of influenza trans-
mission (Żuk et al., 2009), which included some environmental
variables, based on the experimental results of the work of
Lowen et al. (2007), involving guinea pigs. The transmissibility
parameter occurring in that model was approximated for given con-

ditions by comparing results of pseudo-simulations with the actual
experimental data. That approach had, however, quite substantial
limitations regarding rather small size of the data set available.
Consequently, the results were to some extent not entirely satisfy-
ing. In particular, the following problems were encountered while

http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:tzuk@icm.edu.pl
mailto:rakowski@icm.edu.pl
mailto:janr@icm.edu.pl
dx.doi.org/10.1016/j.compbiolchem.2009.07.005
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the relevant ensemble-independent information about the influ-
ence of environmental conditions on influenza transmissibility,
such as those related to viral aerosol release and stability, rela-
tive cell infectivity potential, or mucous membranes vulnerability.
What it does not incorporate is issues directly related to the
40 T. Żuk et al. / Computational Biol

nalyzing the model behavior at 20 ◦C:

1. The model failed to produce any statistically representative
output that would be similar to the experimental results
obtained for 35% humidity. The same concerns also the case
of 20% humidity—unless we assume an unexpectedly high and
otherwise improper value of a certain ensemble-dependent
parameter.

. The case of 50% humidity, for which a small infection rate
occurred, was assigned the highest transmissibility.

In addition, that model provided ranges, rather than exact val-
es, of parameters.

In this work we propose yet another model, based on a different
pproach, which seems to be less sensitive to the size of the data
et available.

. Theoretical background

.1. Available data

No additional experimental data of kind necessary here were
ublished yet, as far as were able to ascertain. Therefore, we again
ake use of the data set of Lowen et al. (2007), who conducted sev-

ral trials, putting four infected and four healthy (and susceptible)
uinea pigs together in a four-shelf chamber such that there were
ne healthy and one infected animal on each shelf. Besides, the
nfected individuals were all placed on the one side of the ensem-
le, and the healthy ones, on the other. Afterward a steady stream of
ir was blown from the former side toward the latter. Every 2 days
he experimenters measured the nasal wash titer in each animal in
rder to control the infection course or occurrence. This procedure
ere repeated two times for every set of environmental param-

ters, namely, for 20%, 35%, 50%, and 65% humidity at 20 ◦ C and
5%, 50%, 65%, and 80% humidity at 5 ◦C. There were also two trials
onducted at 30 ◦C, but no infections were observed at this tem-
erature. The results revealed a somewhat complex dependency
elationship between the infection rate and the environmental con-
itions (Lowen et al., 2007).

.2. Probabilistic framework

We propose a stochastic approach to model phenomena related
o infection and subsequent illness development. In particular, we
escribe each act of infection in terms of the three consecutive
andom events: (a) inhalation of a biologically active virion, (b)
irion entering into a host cell, and (c) the cell survival over a
imeframe sufficient for the virion to produce, and to release, its
escendants, not being destroyed by the host’s immune system. If
ny of the virions in the ensemble succeeds in each of those three
tages, infection develops, and the host gets ill. Our basic premise
s:

1. All these random events, taken for all virions separately, are
mutually independent in the probabilistic terms, i.e., successes
or failures of any number of virions at any of these three steps
does not affect the success/failure probability of any other virion
at any step.

. Those probabilities are independent of the total number of
virions that are present in the ensemble or have passed the pre-

ceding step.

In other words, we assume that all virions contribute to the
nfection on their own merits, and do not act synergistically or
irectly affect the host’s state. This single assumption implies the
d Chemistry 33 (2009) 339–343

neglect of some otherwise important phenomena, e.g., the fact that
a contact with a pathogen leads to an increased immune response
at the later time. However, we will show that such a model is accu-
rate enough for the purpose of analyzing results of short-lasting
infection-rate-related experiments with average virus concentra-
tion levels.

Let p0 denote the probability that a virion will pass through both
steps (b) and (c) after being inhaled, thus leading to infection. This
quantity may more or less depend on the environmental condi-
tions, but except for this fact, it should be constant following the
above assumptions (and particularly, it should be constant within
a single experiment). If the total number of inhaled virions is N, the
probability of infection equals

P = 1 − (1 − p0)N

as the subtracted term is the probability that none of the N virions
will succeed. We expect p0 to be small (a single virion is not very
likely to cause a disease), so it will be possible and convenient to
use a Poisson-like formula instead:

P = 1 − e−p0N.

If there are several sources of virions (infected hosts) in the
ensemble, the jth source has released Mj virions, and the proba-
bility of inhalation of a still active virion from source j by host i is
ϕij , the infection probability for host i then equals

Pi = 1 − exp

⎛
⎝−p0

∑
j

ϕijMj

⎞
⎠ .

The probabilities ϕij serve as coefficients carrying the informa-
tion about geometrical and mechanical properties of the ensemble,
as well as about virus stability. The latter feature implies an explicit
dependency on temperature and humidity. However, it seems rea-
sonable to assume that the transport-related phenomena and those
affecting stability are independent of each other. This enables us
to separate ϕij(T, H) into two factors: position-dependent ˛ij and
weather-dependent g0(T, H). We also assume a direct proportion-
ality between the number of virions released by an individual per
unit time and the virus titer in its nasal wash (ˇj). We then put
Mj = �〈ˇj〉�t, where �t is the relevant period of time and 〈ˇj〉 is
the mean titer over that period. The coefficient � may also slightly
depend on temperature. However, we may put it together with p0
and g0 into a single weather-dependent parameter �0(T, H); thus
finally

Pi = 1 − exp

⎛
⎝−�0(T, H)�t

∑
j

˛ij〈ˇj〉

⎞
⎠ . (1)

The parameter �0, which relative values for different T and H
are to be calculated from the experimental results, contains all
disease course, e.g., the mean virus titer, or the duration of infec-
tious period. That is they are treated rather as variables than
as parameters in this model, which is geared to quantify trans-
missibility as a phenomenon, normalized to the unitary viral
load.
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Table 1
Decimal logarithms of the mean nasal wash titer values in pre-infected guinea pigs
on day 2 (log ˇref) in each experimental case.
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Table 2
The obtained relative values of transmissibility (×108) that minimize the deviation
function described in the main text. For 5 ◦ C and 35% humidity, all animals were
infected during the first phase of experiments, leading to zero deviation element for
any gamma not less than 6.9. However, as the infections seem to distribute nearly
equally between days 1 and 4, it is reasonable to pick the least value that gives no
deviation. For 20 ◦ C and 80% humidity, no infections occurred, so we may only set a
top limit. For 5 ◦ C and 20% humidity, experiments were not performed.

T H

20% 35% 50% 65% 80%

20 ◦C 1.0 2.0 1.1 3.4 <0.85
5 ◦C – 6.9 3.6 1.8 2.0

Table 3
The deviation values for experiments performed under particular conditions. The
total deviation is 0.74; most of it is generated by the (20 ◦C, 35%) case.

T H

20% 35% 50% 65% 80%
A B C D E F G H

0 ◦C 6.9 6.2 7.9 7.5 7.1 6.8 7.2 7.1
◦C 6.9 7.2 7.1 6.9 6.4 6.9 6.1 6.9

. Methods

.1. Infections in our ensemble

In each experiment there are two ways of getting infected: by a
re-infected individual, or by one that was healthy at the beginning,
ut became infected in the first manner (secondary infections). We
ssume that these two possibilities do not co-exist at the same time,
.e., the pre-infected animals recover before any of the other starts to
e infectious. This seems reasonable if one looks at the graph show-

ng the average nasal wash titer in pre-infected animals (Lowen et
l., 2007) and note the logarithmic scale. Only a minor viral load is
eleased after day 4 (at 20 ◦C), or 5 (at 5 ◦C). On the other hand, as
he incubation period lasts for 2 days and the peak infectiousness
ccurs 2–4 more days afterwards, the infectious periods of the pre-
nfected and the non-pre-infected hosts generally do not intersect.
hus, we classify the infections occurring up to day 5 to the first
hase, and the rest of them, to the second one. When the titer is at
rst non-zero on day t, we take day t − 2 as the infection moment

f ˇ < 103 or t − 3 otherwise.
Thus, having the infection rates for particular T, H from the

xperiment, we might calculate �0(T, H) from Eq. (1) although
pproximation of the ˛ij coefficients would be a challenge even
hould we knew all the relevant dimensions and the airflow param-
ters of the ensemble used. However, the relative transmissibility
alues might be obtained without this, provided that we simply
ncorporate those geometric coefficients to �0 as an unknown con-
tant, and then make some further simplifying assumptions.

For the first phase, if we average the viral load received by all
he healthy animals, we may, following the above, write the general
nfection probability as

1 = 1 − e−�(T,H)ˇref�t (2)

here � is the relative transmissibility, which absolute values
eflect also the geometric features of the particular ensemble. The
eference nasal wash titers ˇref are collected in Table 1; we take the
ean value1 on day 2, when it is usually nearest the maximum. We

lso set �t to 2 days for 20 ◦ C and to 4 days for 5 ◦ C as this is the
pproximate duration of the high titer period.

The probability of being infected during the second phase
epends on the number of individuals infected during the first
hase (n1). As the relative positions of virus sources and targets
re now different than in the previous phase, we must introduce an
dditional factor ˛ in the exponent of Eq. (2). Again we assume that
ll the animals receive the same, average number of viral particles,
ut we also set all ˇref to a fixed, average value ˇ0 = 107. Hence the
robability of infection

2 = 1 − e−�˛ˇ0t0n1/2. (3)
The factor n1/2 follows from the fact that a non-pre-infected
ndividual has on average 3/2 non-pre-infected neighbors, of which
he ratio n1/3 has been infected in phase 1.

1 For convenience, we use the geometric mean here, i.e., we take the arithmetic
ean on a logarithmic scale.
20 ◦C × 0.61 0.00 × –
5 ◦C – × × 0.02 0.11

3.2. Determination of parameter values

As the goal is to find the appropriate values of �(T, H) (for each
set of T and H conditions used in the experiments), we need to quan-
tify the differences between the real and the expected experimental
results.

Let us consider the experimental cases for particular T and H. Let
n1 denote the total number of hosts that were infected during the
first phase, and n2, during the second. Given � and ˛, we may cal-
culate, for each of those cases, the probability of infection for both
phases, P1 and P2, from Eqs. (2) and (3). Now let us compare n1,
n2 with the respective expected values, x1, x2, derived from those
probabilities. If they differ by less than 0.5, i.e., the number of infec-
tions occurred is the natural number closest to the expected value,
there is no deviation. In the opposite case, the deviation element is
(|ni − xi| − 0.5)2. The total deviation for a particular set of param-
eters {�(T, H), ˛} is the sum of all elementary deviations for each
condition set.

Now we may simply search for the parameters that minimize
the deviation value. We do it by checking all the combinations with
�(T, H) ∈ G and ˛ ∈ A, where G consists of values from 10−9 to 5 ×
10−7 with two decimal digit precision, and A, from 0 to 2 with step
0.02. If for certain conditions there exists a range of gamma values
that give zero contribution to the deviation, we pick the middle
value from this range.

4. Results and discussion

Following the procedure described in Section 3.2, we have
obtained ˛ = 0.78 and �(T, H) as shown in Table 2. The deviation
values for particular cases are shown in Table 3. These results seem
to be much more accurate and precise than those obtained from
our previous model (Żuk et al., 2009).

The most important shortcoming of the earlier work was the
fact that our pseudo-simulations could not cover scenarios similar
to the two that were observed for 20 ◦ C and 35% humidity. Both
of them consisted of three infections in phase 1 and one infection

in phase 2, at a very late time. Since the infection rate should gen-
erally be, from the statistical point of view, a decreasing function
of time, using such a scenario for representing a statistically typ-
ical situation just must lead to an error. This problem has been
solved in the present model as (1) we are no longer interested
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n the infection occurrences with a daily resolution, (2) we calcu-
ate the probability of infection in phase 2 using the real, not the
xpected, number of infections in phase 1. Hence, the method is
ore robust with respect to the smallness of the data set, since it

educes the influence of statistical fluctuations and prevents their
nter-phase summation. However, the (20 ◦C, 35%) case, which alone
s responsible for most of the deviation, is still a little troublesome
or yet another reason. The values of virus titer in the pre-infected
nimals are abnormally high, which makes the phase-related infec-
ion ratio 3:1 non-proportional to any reasonable expectations,

articularly for experiment C. The transmissibility value obtained
or these conditions may be somewhat underestimated regarding
he experimental infection rate. A similar problem, but to a lesser
xtent, occurs for the (5 ◦C, 80%) case, which generates nearly all

ig. 1. Linear regression of the natural logarithm of transmissibility with respect to
a) relative humidity, and (b) partial pressure of water vapor. The p-value is 0.250
nd 0.0218, respectively. We took � (20 ◦C, 80%) = 0.85 and � (30 ◦C, 35%) = 0.53,
hich are the largest values still not giving any deviation.
d Chemistry 33 (2009) 339–343

the remaining deviation, but there we encounter an extremely high
variance of titer levels in the same experiment, rather than a strange
mean value, which may make the equal-exposition approximation
too poor.

Another major problem that could not have been managed
within the previous model was the high value of transmissibility
for 50% humidity at 20 ◦C, which we explained again by the fluctu-
ations due to the insufficient number of infections (only 1 per trial).
This is no longer an obstacle here, as our present method does not
rely on any data other than the infection rates. For 20 ◦ C the trans-
missibility has a minimum at around 50% humidity, which fits the
experimental data rather well. The shape of �(H) for 5 ◦ C looks also

quite reasonable.

The general character of � as a function of T, H leads to conclu-
sions analogous to those obtained by Shaman and Kohn (2009),
who examined the statistical significance of linear dependency

Fig. 2. Linear regression of the transmissibility as a function of H (note the loga-
rithmic scale), separately for 20 ◦ C and 5 ◦C. The fitted lines (a) have the (negative)
slopes of 0.02933 and 0.02939, and the intercept, 2.30 and 2.81, respectively.
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etween the total infection rate on one hand, and temperature, rel-
tive humidity, and absolute vapor pressure on the other, using the
ame experimental data. Only the latter turned out to be present
ithout any doubt. The same procedure applied to ln � gives the

-statistic p-values 0.250 for the relative humidity, and 0.0218 for
he absolute vapor pressure2 (Fig. 1).

On the other hand, although inference from 4 estimated points
s not without risk, it seems interesting that the linear regression of
(H), performed separately for 20 ◦ C and 5 ◦C, gives two lines with
early the same slope (Fig. 2a).

Also the deviations from these trends (Fig. 2b) display a cer-
ain regularity; one might try to describe them as oscillations
with respect to H) amplitude and phase of which rises with
he temperature. This would lead to factorization of �(T, H) into
he trend a(T)e−bH and the residual oscillations er(T,H). The trend
ould reflect the phenomena involved in aerosol transportation

s it is the relative humidity that determines the equilibrium con-
entration, and thus size, of the droplets. The other factor would
e responsible for the virus stability, and involve also the abso-

ute humidity (note the translation of phase with temperature
hanges).

The model presented here is therefore much better optimized
or dealing with small data sets than our previous simulations
Żuk et al., 2009). The results it provides are disturbed to much
esser degree by the input sparseness—the situation rather com-

on in many studies involving infectivity data, esp. for pathogens
f high biohazard risk, and we believe might be of value for other
ituations. Of course, it would be interesting and highly bene-

cial to calibrate the model with larger data sets, should such
ata be available. Nevertheless, we believe the results presented
ere are sufficiently accurate to be incorporating in a large-scale
odeling effort, which would be the next stage of the current

roject.

2 These values may seem much poorer than the original 0.059 and 0.00027. Note,
owever, that the number of points is two times less as we have one point per
ondition set, and not per trial.
d Chemistry 33 (2009) 339–343 343
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